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Extending current coherent multidimensional spectroscopy (CMDS) methods to higher order multiwave mixing
requires excitation intensities where dynamic Stark effects become important. This paper examines the dynamic
Stark effects that occur in mixed frequency/time domain CMDS methods at high excitation intensities in a
model system with an isolated vibrational state. The phase-matching restrictions in CMDS define the excitation
beams that interact by nonlinear mixing while the dynamic Stark effects create vibrational ladders of increasingly
more energetic overtone and combination band states. The excited quantum states form coherences that reemit
the output beams. This paper uses the phase-matching conditions kbout ) kb1 - kb2 + kb2′ and kbout )- kb1 + kb2 +
kb2′, where the subscripts denote the excitation frequencies of each excitation pulse and the output pulse. The
phase-matching condition constrains each pulse to have an odd number of interactions so the overall mixing
process that creates the output coherence must also involve an odd number of interactions. Tuning the excitation
frequencies and spectrally resolving the output intensity creates three-dimensional spectra that resolve the
individual overtone states. Changing the excitation pulse time delays measures the dynamics of the coherences
and populations created by the multiple excitations. The multidimensional spectra probe the highly excited
states of a molecular potential energy surface. This paper uses tungsten hexacarbonyl (W(CO)6) as a model
for observing how dynamic Stark effects change the multidimensional spectra of a simple system. The simplicity
of the W(CO)6 system provides the experimental data required to develop the nonperturbative theoretical
methods that will be necessary to model this new approach to CMDS.

Introduction

The selectivity of multiple pulse nuclear magnetic resonance
(NMR) rests on its ability to excite multiple spin transitions to
create coherent superposition states that are selective for specific
molecules.1-3 The multiple transitions must occur within the
superposition state’s dephasing time. Similarly, the development
of the coherent optical analogues to multiple pulse NMR
requires the ability to excite multiple optical transitions within
the dephasing time of the coherent superposition states. Since
dephasing rates for optical transitions are orders of magni-
tude faster than spin transitions, high excitation intensities are
required to create Rabi frequencies that are comparable to the
coherence dephasing rates. High intensities, however, create
dynamic Stark effects, so it becomes important to understand
how dynamic Stark effects change CMDS spectra. Dynamic
Stark effects are commonly used to create the multiple interac-
tions needed to generate highly excited state populations in
pump-probe experiments and control reaction dynamics in
coherent control experiments.4-7 Chirped pulses5 and temporally
shaped pulses7 are particularly effective in driving multiple
interactions because the changing frequencies can match the
changes in the anharmonicity of increasingly energetic states.

In this paper, we use W(CO)6 as a model compound for
exploring the effects of dynamic Stark effects on coherent
multidimensional spectra. W(CO)6 is a model compound
because it has an isolated vibrational transition and a very large
transition moment.8-22 Thus, dynamic Stark effects can be
obtained with modest excitation intensities and observed without
competing effects from overlapping transitions. This paper

describes a mixed frequency/time domain multiply enhanced
odd-order wave-mixing (MEOW) approach where multiple
beams and dynamic Stark effects coherently create a series of
ladder-climbing excitations that populate highly excited states
and probe their dynamics. The experiments demonstrate that
this method can excite the V ) 6 overtone of the symmetric
stretch mode using 12 wave mixing. Three excitation pulses
create coherent output beams by MEOW, and a monochromator
spectrally resolves the output frequencies. The intensity of the
first two excitation pulses is high enough to cause multiple
interactions and climb the potential well using the dynamic Stark
effects while the last pulse typically has a lower intensity and
interacts a single time. Changing the excitation and monochro-
mator frequencies allows measurement of the multidimensional
spectra. Changing the time delays between the three excitation
pulses allows measurement of the dynamics of the coherences
and populations created by MEOW. The dynamic Stark effect
broadens the transitions so even overtone states with large
anharmonicities can be efficiently excited using excitation
sources whose bandwidth would not normally cause a transition.

Theory

In a phenomenological description of multiwave mixing, the
polarization of an isotropic system is written as a Taylor series
expansion in the field

since the even terms vanish by symmetry.23 Each �(n) represents
n electric field/matter interactions. Our experiment uses three
discrete excitation pulses with two independently tunable
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frequencies, ω1 and ω2. The ω2 beam is split to create the third
excitation pulse, ω2′. Under these conditions, E ) E1 + E2 +
E2′. In coherent experiments, the nonlinear polarization repre-
sented by eq 1 is spatially coherent and emits beams in directions
determined by the phase-matching condition. This technique
allows weak nonlinear signals to be observed against stronger
processes which emit in 4π steradians. The direction is
determined by momentum conservation as defined by the
k-vector addition of the interacting laser fields. The two phase
matching conditions for the kbout output beam in our experiments
are kbout ) kb1 - kb2 + kb2′ and kbout ) -kb1 + kb2 + kb2′.

In a quantum mechanical description of multiwave mixing,
Liouville diagrams describe the sequence of coherences and
populations created by successive excitation pulses.24 Figure 1
shows all the possible pathways for our MEOW experiment.
Here, the arrows designate interactions with the excitation pulses
and the letters designate the density matrix elements describing
the coherences and populations resulting after each interaction.
The first and second letters describe the ket and bra state,
respectively, of a |m〉〈n| coherence or population. The boxes
indicate either the ground state population (gg) or an emitting
output coherence (e.g., 3a,2a). The arrows are not labeled with
the fields creating the interactions because the interactions can
be caused by different excitation fields. The experiments in this
paper use three separate fields, but each field can create multiple
interactions. After multiple interactions, fields with positive k
vectors cause net ket state changes to move right in Figure 1 or
bra state changes to move up. Fields with negative k vectors
cause the opposite changes. In the strong field limit, the arrows
are double-headed since forward and reverse transitions occur.
The transitions created by any one field, however, are con-
strained by the phase-matching condition to an odd number so
the net momentum matches the phase-matching condition. For
example, the phase-matching has a -kb2 vector for excitation
pulse 2. If it interacts N times, the phase-matching requires
[(N - 1)/(2)]kb2 - [(N + 1)/(2)]kb2 ) -kb2 and that N must be
odd. For the conditions used in this paper, excitation pulses 2
and 2′ are temporally overlapped and pulse 1 is much weaker
and delayed by 6 ps. Since pulses 2 and 2′ have opposite signs
in the phase-matching, their net effect is to create a series of
transitions from the ground state population to the different

excited state populations. For example, one lowest order
Liouville pathway that creates the 3a,3a population is

but there are many other equivalent pathways that result in the
same population and all must be considered. The last pulse
(labeled 1) is weak and interacts only once. It interacts with
the 3a,3a population and can create a 4a,3a or 3a,2a output
coherence by

respectively. Both output coherences result from these seventh
order processes and are eight-wave mixing pathways.

The 3a,2a output coherence can also be created by a fifth
order 6-wave mixing process such as

Since both processes are quantum mechanically equivalent, the
contributions from both must be summed and will interfere. If
the excitation frequencies are fully resonant, the successive odd
orders have opposite signs, so the interference between suc-
cessive odd orders is destructive. As a specific example, we
write the density matrix elements of the output coherences for
the two example Liouville pathways in the steady state limit
where the excitation pulses are long compared to the dephasing
time. This limit is appropriate for the experiments in this paper.
The expressions are

for the fifth and seventh order processes, respectively. Here,
Ωij ≡ (µijE°)/(p) is the Rabi frequency where E° is the electric
field associated with the iTj transition; ∆ij ≡ ωij - ωlasers -
iΓij is the resonance detuning factor for the ij coherence; ωlasers

is the combination of excitation frequencies creating the ij
coherence; and µij, ωij, and Γij are the transition moment,
frequency, and dephasing rate of the ij coherence, respectively.
The k vectors and excitation frequencies from each interaction
are shown explicitly to reflect the order of the pathway. On
resonance, eqs 2 and 3 become

and

Figure 1. Liouville pathways for the multiply enhanced odd-wave
mixing. The letters designate the density matrices describing the
coherences and populations resulting from interaction with an electro-
magnetic field. The arrows are double headed because in the strong
field limit, transitions can occur in either direction. Horizontal arrows
correspond to ket-side transitions and vertical arrows correspond to
bra-side arrows. Boxes denote the initial ground state population, gg,
and the output coherences created with the kb4 ) kb1 - kb2 + kb2′ phase-
matching condition.
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so the different orders of interactions result in opposite signs
for the pathways.

In addition to interference between pathways with different
orders of interactions that create the same coherence, one must
also consider interference between different output coherences
arising from the same N-wave mixing process. Successively
higher output coherences differ in sign because they involve
different numbers of bra-side interactions. Each bra-side interac-
tion changes the sign of the nonlinear polarization. For example,
the ag and 3a,2a coherences involve an even number of bra-
side transitions and constructively interfere while they destruc-
tively interfere with the 2a,a and 4a,3a coherences, which have
an odd number of bra-side interactions.

The experiments reported in this paper involve electric fields
that are intense enough that dynamic Stark effects become
important. The dynamic Stark effect can be conceptualized as
a breakdown of the Taylor series perturbative expansion.25,26

As the excitation intensity increases, the higher order coherences
and populations become important and the complex interference
effects mentioned above come fully into play. Ultimately, the
vibrational transitions split and widen. In the steady state limit
of a closed two-state system, the dynamic Stark effect causes
the following well-known relationship:25-27

The amount of broadening will therefore depend on [(Γag)/
(Γaa)]1/2Ω. Our typical experimental conditions are 1 µJ pulse
energy, 1 ps pulse width, 50 µm beam waist, and a 0.9 D
transition dipole moment. The corresponding Rabi frequency
is ∼40 cm-1 so the dynamic Stark effect becomes important.
In addition, as higher levels in the potential well are excited,
lifetimes drop and transition dipole moments increase. The
higher transition moment will increase the Rabi frequency for
these excited state transitions but the importance of the dynamic
Stark effect will depend on the Γag/Γaa ratio, which may become
smaller. We believe that the high Rabi frequency, the large Γag/
Γaa ratio, and the increased sensitivity of these frequency domain
methods permits reaching overtone states with anharmonicities
that are outside the excitation pulse bandwidth and permit the
identification of the fifth overtone state.

In order to model experimental observations, all participating
pathways must be considered together. In perturbative simula-
tions, creation of any output coherence requires a minimum
number of interactions, but it can also be created by an infinite
number of interactions beyond the minimum. Clearly, the
perturbative approach fails in the limit of strong fields. It will
be important to develop nonperturbative simulation approaches
for quantitatively describing the data reported in this paper.28,29

Further modeling of the MEOW spectroscopy is not attempted
because of the complexity of the pathways that must be
considered and the difficulties in treating the simulations
nonperturbatively.

Experiment

A commercial Ti:sapphire oscillator/regenerative amplifier
creates ∼1 ps pulses at 1 kHz, and 1.2 W power. The pulse

train is divided and excites two independently tunable optical
parametric amplifiers (OPAs). Difference frequency generation
from the OPA signal and idler create tunable mid-IR light. One
OPA creates the ω1 beam, and the second OPA output is divided
to create the ω2 and ω2′ beams. Typical energies in our
experiments range from 0.2 to 1.5 µJ for ω1 and 2.3 and 1.2 µJ
for ω2 and ω2′, respectively. The spectral width (fwhm) is 20
cm-1. The spectral output also has two satellite features that
are <1% of the central feature and shifted by 27 cm-1.
Computer-controlled delay lines determine the temporal delays
between the ωi and ωj pulses, τij ) τi - τj. The beams are
focused into the sample with a 10 cm focal length off-axis
parabolic mirror. A second off-axis parabolic mirror collimates
the signal beam. The signal in the kbout ) kb1 - kb2 + kb2′ or kbout )
-kb1 + kb2 + kb2′ phase-matching direction is isolated with an
iris, sent to a 0.3 m monochromator, and detected with a single
element mercury cadmium telluride detector. A boxcar integrator
resolves the signal that is then digitized with a 12-bit data
acquisition card. Step sizes in our scans are 2 cm-1 for frequency
scans, and 0.2 ps for temporal scans. Each data point is the
average of 2000 laser shots.

The sample consisted of a 125 µm thick 0.5 mM solution of
W(CO)6 in hexane held between 2 mm CaF2 windows. The
resulting absorbance is <1 for the T1u carbonyl mode at 1983
cm-1. The transition dipole moment for this vibrational mode
has been reported as ∼1 D in the literature.4 Our measurements
indicate 0.8 D.

Results and Discussion

Figure 2 shows the dependence of the signal intensity on the
excitation lasers pulse energy when the laser and monochromator
frequencies were tuned to the W(CO)6 fundamental at 1983
cm-1. For Figure 2a, the energy of the ω2 and ω2′ excitation
pulses were attenuated with irises to 0.107 and 0.058 µJ/pulse,
respectively, while changing the energy of ω1 with an iris. The
signal intensity depends linearly on the ω1 excitation pulse
energy as expected for a four-wave mixing signal in this phase-
matching geometry. The dependence departs from linear when
the ω1 energy reaches 0.7 µJ and then decreases at higher
energies. This change reflects the importance of higher order
processes that interfere with the four-wave mixing. Figure 2b
shows a log-log plot when ω1 was attenuated via an iris to
∼0.25 µJ, and the ω2/ω2′ beam powers were adjusted by a
polarizer pair. The polarizers were inserted before dividing the
OPA output into ω2 and ω2′, so both beams increased propor-
tionally. At low intensities, the signal intensity increases
quadratically with a slope of two as expected for the four-wave
mixing phase-matching condition. At higher intensities, the
signal intensity saturates and becomes independent of the ω2

intensity.
Figure 3 shows the logarithmic dependence of the T1u mode

signal intensity on the excitation frequencies with the constraint
that the monochromator frequency ωm ) ω1. To prevent high
order processes, all pulse energies were between 0.1 and 0.3
µJ. The ω1 beam was attenuated with a polarizer pair, and the
ω2/ω2′ beams were attenuated with a series of irises. The time
ordering of the pulses was such that ω2 and ω2′ are temporally
overlapped, and they arrive 6 ps before ω1. Phase-matching
requires that the first two interactions produce a population. The
third pulse probes the population. The peak located at (ω1, ω2)
) (1983, 1983) cm-1 is the diagonal peak that is created by the
coherence pathways shown as wave mixing energy level
(WMEL)30 diagrams in Figures 4a-d. The peak at (ω1, ω2) )
(1968, 1983) cm-1 is formed by the pathways shown in Figures
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3
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4e-f. While ω2 and ω2′ are still tuned to the fundamental mode
for this second peak, the final laser ω1 and the signal frequency
ωm correspond to the overtone transition. These peaks are

separated by their anharmonicity. Finally, there is a third peak
at (ω1, ω2) ) (1954, 1983) cm-1. This peak results from a six-
wave mixing pathway shown in Figure 4g that involves the
second overtone. Its position reflects the additional anharmo-
nicity of the second overtone. It becomes much brighter at higher
excitation intensities.

Figure 5 is the same scan as Figure 3, but the power of the
ω2 and ω2′ laser beams have increased to 2.25 and 1.25 µJ,
respectively. The fundamental peak has broadened significantly
along the ω2 axis. In Figure 3, the full width at 10-5 of the
maximum intensity was 35 cm-1 along the y-axis; at high power
it is 70 cm-1. The satellite lobes near 2010 and 1955 cm-1 are
attributed to excitation of the T1u mode by the weak satellite
features in the excitation pulses. These satellites appear anoma-
lously bright relative to the T1u peak at 1983 cm-1 because the
T1u intensity is saturated at high excitation intensities by the
aforementioned interference with higher order processes. While
the 1983 cm-1 peak is somewhat broader along the ω1

dimension, it is not broadened appreciably for two reasons. First,
the monochromator frequency at ωm ) ω1 measures the free
induction decay of the output coherence and thus provides
spectral narrowing. Second, the probe pulse is weak and delayed
by 6 ps so dynamic Stark effects are not as important.

There are new peaks that are red-shifted from those observed
in the low intensity spectrum in Figure 3. Figures 4g-h show

Figure 2. Dependence of the output intensity on the excitation energy.
(a) Adjusted ω1 intensity for τ21 ) 0.0 ps and τ2′1 ) 5.0 ps. ω2 and ω2′
excitation energies were ∼0.107 and 0.058 µJ/pulse, respectively. (b)
Adjusted ω2 and ω2′ intensity for τ21 ) τ2′1 ≈ -5.0 ps. ω1 intensity
∼0.22 µJ/pulse for the open squares, and ∼0.3 µJ/pulse for the solid
triangles. The two symbols represent two data sets that were scaled
for differences in excitation beam overlap and ω1 intensity. A line with
a slope of two is shown in the figure.

Figure 3. Dependence of the output intensity on the excitation
frequencies ω1 and ω2. The monochromator frequency was synchro-
nously scanned so ωm ) ω1 and the excitation time delays were fixed
at τ21 ) τ2′1 ) -6.0 ps. The excitation energies were low. The color
bar is logarithmic.

Figure 4. Wave mixing energy level (WMEL) diagrams30 for
representative nonlinear processes. The solid and dotted arrows show
ket- and bra-side interactions with fields labeled by numbers, and the
double arrow shows the output field.

Figure 5. Dependence of the output intensity on the excitation
frequencies ω1 and ω2. The monochromator frequency was synchro-
nously scanned so ωm ) ω1 and the excitation time delays were fixed
at τ21 ) τ2′1 ) -6.0 ps. The ω1 energy was low and the ω2 energy was
high. The color bar is logarithmic.
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two example WMEL diagrams that involve the second and first
overtone transitions, respectively. These peaks result from higher
order processes involving more energetic overtone states. The
red shifting along the ω1 dimension directly corresponds to the
changes in the free induction decay frequencies of coherences
involving these higher overtone states. These peaks also
demonstrate a steady red shifting along the ω2 dimension. To
have output at the third overtone (3a,2a coherence), the initial
ω2 and ω2′ excitations must create a population in either the 2a
or 3a state. Since ω2 and ω2′ have identical frequencies, the
optimal position for creating populations in the second overtone
will be a compromise frequency between the ωg,a and ωa,2a

transition frequencies. Though dynamic Stark effects make the
determination of the optimum excitation frequencies complex,
a slight but steady trend of higher order processes being
optimized by red shifting the ω2 frequency is clear. The
advantage of shifting the central excitation frequency has also
been previously demonstrated with chirped pulses5 and pulse
shapers.7 By simply changing the frequency of the ω2/ω2′ laser,
we can also optimize various pathways and preferentially
enhance particular peaks.

Although the peak locations for the fundamental and first
overtone are clear in the low power scan of Figure 2, several
overtones in the high power scan are obscured by interference
effects from neighboring peaks. In order to improve the
resolution, we set ω2 to a frequency that optimizes the desired
high-order peaks and scanned ω1 versus ωm. Figure 6 shows
the results of this experiment. Figure 6b repeats the spectrum
in Figure 6a but with ω2 ) 1970 cm-1 so the higher order
overtone features are emphasized. Note that the peaks are
slightly slanted with slopes of (dω1)/(dωm) ) 6. The slant results
because the monochromator measures both the free induction
decay that always appears at the frequency of the output
coherence and the driven nonlinear polarization that appears at
ωm ) ω1. The slope depends on the relative importance of the
two processes. The center position of ωm for each feature in

Figure 6 defines the frequency of each overtone state. We
determined the centers by fitting Gaussian line-shapes to spectra
where ω2 was centered on each feature and ω1 varied across
the line-shape. Table 1 summarizes these frequencies and
compares them to previously reported literature values. This
approach minimizes the effects of interference between the
different output coherences that can shift the positions if the
2D spectrum of Figure 6 is projected onto the ωm dimension
and integrated.

In Figure 7, we fit the observed levels with the following
modified Morse potential containing a cubic anharmonicity
term.31

It was necessary to add the cubic term in order to obtain
agreement with the measured values. The fitting parameters for
the transition frequencies are summarized in Table 1.

Figure 8 shows representative temporal dependences of the
high overtone state dynamics. Interpretation of the temporal
dependences has been covered in previous publications for four-
wave mixing.32,33 Scans along the diagonal for negative τ21 )
τ2′1 measure the population relaxation rate, while scans over
positive values measure the coherence dephasing rates. Figure

Figure 6. Dependence of the output intensity on the ω1 excitation frequency and the monochromator frequency, ωm. The ω2 excitation frequency
was (a) 1974 cm-1 and (b) 1970 cm-1, and the excitation time delays were fixed at τ21 ) τ2′1 ) -6.0 ps. The ω1 energy was low and the ω2 energy
was high. The color bar is logarithmic.

Table 1

quantum
number

transition frequency
(cm-1), This work

calculated
valuea

transition frequency
(cm-1), Literature

1 1983 1982.5 19824,6

2 1968 1969.4 1967,419666

3 1954 1953.0 1952,419516

4 1934 1933.3 1933,419306

5 1909 1910.1 19076

6 1884 1883.6 18826

a ω0 ) 1998.7 cm-1, a ) 2.332 cm-1, b ) 0.5595 cm-1.

EV ) ω̄e(V + 1
2) - a(V + 1

2)2
- b(V + 1

2)3
(7)
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8a shows the temporal dependence of the V ) 6 overtone at
1883 cm-1. As expected, signal appears only when the first two
lasers are temporally overlapped and create populations. Popula-
tion relaxation causes the intensity to decay for increasingly
negative values of τ21 ) τ2′1. Signal is only observed near τ21

) τ2′1 because the two most intense excitation pulses must be
temporally overlapped to create sufficiently high Rabi frequen-
cies to populate the V ) 5 overtone state. Figure 8b shows the
same scan, but the excitation frequencies excite the V ) 4
overtone. Moving along the diagonal again measures the
population relaxation. Here, the dephasing of the coherences

can also be measured from the intensity decay along τ2′1 or τ21

since the coherence dephasing rates are slow enough to observe
their dynamics and the first two excitations can populate the V
) 3 state without being temporally overlapped. Figures 8c-d
show the dynamics of the V ) 1 state at low excitation intensities
and high ω2 energies, respectively. The V ) 1 dynamics differs
from the others because ω1 ) ω2 for this state, so the V ) 1
population can be excited regardless of whether the ω1 excitation
occurs before or after the other excitation events. The coherence
dephasing rate is sufficiently slow that it is also resolved. At
higher ω2 intensity, additional modulations appear in the
dynamics, again because of beating between the different
coherences that are broadened by the dynamic Stark effect. The
broadening results in spectral overlap so the different pathways
interfere and create the modulations. We have also measured
the dynamics for the V ) 2, 3, and 5 overtones, and these are
provided in the Supporting Information.

We also present preliminary results for MEOW methods using
the kbout ) -kb1 + kb2 + kb2′ phase-matching condition. This phase-
matching condition has the advantage that the output frequency
is different from the excitation frequencies (assuming ω1 * ω2)
so scattered light is not as important. Previously, we used this
phase-matching condition for the observation of coherence
transfer when cross-peaks are excited.34 The phase-matching
condition for cross-peaks results in output coherences with
forbidden transitions,35 but they become allowed if coherence
transfer occurs. In this paper, however, there are no cross-peaks
since W(CO)6 has only a single CO vibrational stretching mode.
For this case, the output coherences have allowed transitions.
This phase-matching condition is fully coherent if the ω2 and
ω2′ beam precede the ω1 beam so there are no intermediate
populations. The last pulse then acts as a probe that is
independently tunable from the previous excitation frequencies.
For example, the first two excitations in four-wave mixing create
a 2a,g double quantum coherence. The third beam then creates
either a 2a,a or ag output coherence. If the first two beams create
n interactions in an n + 2 wave mixing experiment, the phase-
matching condition requires that n is even and the sum of two
odd numbers representing the interactions for the two beams.
These interactions will create a series of multiple quantum
coherences of which the most energetic coherence will be (n/2
+ 1)a, (n/2 - 1)a. A bra- or ket-side interaction with the last
pulse then creates the (n/2 + 1)a, (n/2)a or (n/2)a, (n/2 - 1)a
output coherence. The result will be a series of peaks in the
two-dimensional spectrum with ωm and ω1 matching the n/2
and n/2 - 1 overtone frequencies, respectively, or vice versa.

Figure 9 shows the spectra for the phase-matching condition
kbout ) -kb1 + kb2 + kb2′ at low excitation intensity (Figure 9a)
and high ω2 intensity (Figure 9b). For these spectra, ω2 ) 1978
cm-1 and ω1 and ωm are scanned. The delays are τ21 ) τ2′1 )
-2.0 ps so the first two excitation pulses created a series of
coherences between overtones. The output frequency for the
driven process appears at ωout ) 2ω2 - ω1 so the driven output
frequency will change as (dω1)/(dωm) ) -1. The slope gives
the spectrum an asymmetrical shape. Figure 9a has two peaks
corresponding to the two WMEL diagrams drawn near each
peak. At higher intensity, additional structure appears in the
spectrum from the higher order wave mixing effects. The circles
appear at the positions expected for the peaks formed by n
interactions of the first two excitation pulses. Clearly, the
dynamic Stark effects create more structure in the spectrum than
can be explained by the simple arguments presented here.
Additional data showing the dependence of the signal intensity
on the two excitation frequencies and the dependence on the

Figure 7. Dependence of the transition frequency on the quantum
number of the overtone state. The red line represents a Morse potential,
and the blue line includes an additional third-order anharmonicity.

Figure 8. Dependence of the output intensity on the temporal excitation
pulse delays, τ21 and τ2′1 for fixed excitation and monochromator
frequencies. (a) ω1 ) 1884 cm-1, ω2 ) 1965 cm-1, ωm ) 1883 cm-1.
The ω1 energy was low and the ω2 energy was high. The intensity
color bar is logarithmic. (b) ω1 ) 1934 cm-1, ω2 ) 1974 cm-1, ωm )
1934 cm-1. The ω1 energy was low and the ω2 energy was high. The
intensity color bar is logarithmic. (c) ω1 ) 1983 cm-1, ω2 ) 1983
cm-1, ωm ) 1983 cm-1. The ω1 and ω2 energies were low. The plot
retains its shape for output intensities 3 orders of magnitude lower than
those show. The intensity color bar is logarithmic. (d) ω1 ) 1983 cm-1,
ω2 ) 1983 cm-1, ωm ) 1983 cm-1. The ω1 was low and ω2 energy
was high. The intensity color bar is logarithmic.
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temporal delay times appears in the Supporting Information.
Further work has not been done on this phase-matching
condition.

Conclusions

Coherent multidimensional spectroscopy (CMDS) has relied
on four-wave mixing methods such as stimulated photon echo,
pump-probe, and transient grating processes.36 It will be
interesting to extend CMDS methods to higher order multiwave
mixing because increasing the number of interactions can
increase the spectral selectivity of CMDS methods. The higher
excitation intensities required to create multiwave mixing also
create dynamic Stark effects. This work studied the influence
of dynamic Stark effects on the coherent multidimensional

vibrational spectra of W(CO)6 as a way to isolate the dynamic
Stark effect from other influences. Two tunable excitation
frequencies and three excitation beams created output coherences
using multiply enhanced odd-order wave-mixing spectroscopy
and a monochromator measured the free induction decay and
driven emission of the output coherences. Raising the excitation
intensity created new features in two-dimensional spectra
acquired by scanning different combinations of the excitation
and monochromator frequencies. The new features were pro-
duced by higher order nonlinear processes involving an odd
number of interactions with the excitation fields. The free
induction decay frequency measured the anharmonicity of the
different overtone states up to V ) 6. It will be important to
develop nonperturbative simulation methods that can provide a
quantitative model of the multidimensional spectroscopy so it
becomes feasible to extract more molecular information about
the potential energy surface and the coherent dynamics that
control the spectroscopy as well as deconvolute the effects of
interference between multiple coherence pathways.28,29

W(CO)6 is a model compound that is not representative of
the broader class of electronic and vibrational transitions.
Electronic and vibrational transitions have different transition
moments and multiple quantum states that are not spectrally
isolated. Typical vibrational transition moments are 15× smaller
(µ ≈ 0.06 D for ε ≈ 100 L/mol cm) than W(CO)6 so the
corresponding Rabi frequencies would be ∼3 cm-1. Such Rabi
frequencies are comparable to typical vibrational dephasing rates
so dynamic Stark effects must still be considered. In addition,
the excitation intensity can be raised by tighter focusing if larger
dynamic Stark effects are required. The dynamic Stark effects
have two consequences: (1) they allow ladder-climbing transi-
tions within a specific mode; (2) they make higher order mixing
processes comparable in efficiency to lower order processes.
Ladder-climbing transitions allow probing of the higher energy
parts of molecular potential energy surfaces while creating
higher order mixing processes allow the use of multiple
excitation frequencies that can excite multiple quantum states
in multistate samples. If dynamic Stark effects occur for multiple
state excitations, it becomes possible to probe the off-diagonal
parts of the molecular potential energy surface.

The multiple transitions in W(CO)6 create a series of
populations in successively higher states. The states in W(CO)6

have long population lifetimes so population relaxation is not
important for the experiments reported here.4 However, in
molecules with shorter population lifetimes, population relax-
ation will result in additional relaxation assisted37 coherence
pathways that cause new spectral features to appear at longer
population delay times. These effects will cause spectral
congestion and make interpretation more difficult. The relaxation
assisted pathways can be eliminated by using fully coherent
pathways in samples with multiple quantum states. We have
shown that mixed frequency/time domain CMDS can create
multiple quantum coherences involving fully coherent pathways
that lack the intermediate populations that undergo population
relaxation.38 The resulting spectra then do not contain relaxation
assisted features.

This work is also applicable to CMDS of electronic transitions
where the transition moments are comparable or larger than
those of W(CO)6. The importance of dynamic Stark effects will
depend on the dephasing rates for the electronic transitions.
There are many examples of nonlinear experiments with
electronic states where saturation and dynamic Stark effects
become important so MEOW spectroscopy should be applicable
to these systems as well.

Figure 9. Dependence of the output intensity on the ω1 excitation
frequency and the ωm monochromator frequency for the kb4 ) -kb1 +
kb2 + kb2′ phase-matching geometry. The ω2 excitation frequency was
1978 cm-1 and the excitation time delays were fixed at τ21 ) τ2′1 )
-2.0 ps. The excitation energies were (a) low for all beams or (b)
high for all beams. The color bar is logarithmic.
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Future directions for this work will explore using dynamic
Stark effects and fully coherent pathways involving multiple
quantum state coherences for molecular spectroscopy in more
complex systems. The multiple quantum state coherences will
provide spectral selectivity in much the same way as multiple
pulse NMR methods such as heteronuclear multiple quantum
coherence (HMQC) spectroscopy.39 The dynamic Stark effects
will probe the diagonal and off-diagonal parts of the molecular
potential energy surface. The use of mixed frequency/time
domain methods is particularly well-suited for this approach.
Since these methods require only short-term phase coherence,
it is possible to use independent excitation pulses to create
multiple quantum coherences involving states with disparate
energies.32
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